Развитие теории проектирования судов
Страница 3

Инфо » Проектирование судов » Развитие теории проектирования судов

QR = FC1. Из треугольника C1FP,

.

Из треугольника C0GE,

.

Окончательно получим,

lст = уСosΘ + zcSinΘ – aSinΘ.

С учетом масштабов длин, данное выражение можно переписать в виде,

lст = bуc0СosΘ + tzc0SinΘ – ta0SinΘ.

Частными случаями полученной зависимости будут выражения:

при l ¹ 1, b = t = 1

Θ= Θ0 , ρ = ρ0, lcт = lcт0.

При l = b = t = l

Θ= Θ0 , ρ = l ρ0, lcт = l lcт0.

Таким образом, если известны значения плеч статической остойчивости прототипа, задача решается довольно просто.

При пересчете параметров непотопляемости, проектанта, в первую очередь, интересуют следующие параметры: приращение осадки носом DTн, приращение осадки носом DTк и угол дифферента y.

При условии при l ¹ 1, b = t = 1 и одинаковых относительных координатах поперечных переборок, длина (и объем) поврежденного отсека изменяется пропорционально l. Соответственно, масса влившейся в отсек воды Р = lP0, а координата ЦТ отсека х = lx0.

Рис. 4. Соотношение затопленных отсеков подобных судов

Тогда:

,

.

Аналогично DTк = DTк0.

Таким образом, при изменении длины судна, аварийная осадка не меняется, а дифферент уменьшается пропорционально l.

При b ¹ 1, l = t = 1 получаем DTн = DTн0, DTк = DTк0, y = y0.

При t ¹ 1, l = b = 1 получаем DTн = t DTн0, DTк = t DTк0, y = ty0.

Показателем общей прочности являются максимальные нормальные напряжения s возникающие в продольных связях корпуса под действием изгибающего момента Мизг.

,

где W – момент сопротивления корпуса.

,

где I – момент инерции площади эквивалентного бруса относительно нейтральной оси, а – численный коэффициент, Н – высота борта. Поскольку момент инерции равен площади поперечного сечения корпуса S, умноженный на квадрат радиуса инерции r, зависящего от высоты борта, то

.

Изгибающий момент возникает под воздействием сил, пропорциональных объему погруженной части корпуса, приложенном на плече, зависящим от длины корпуса. Следовательно

.

Тогда:

.

Таким образом, напряжения, возникающие в связях корпуса, пропорциональны длине и обратно пропорциональны высоте, а поскольку степень при модуле длины равняется двойке, увеличение длины судна приводит к интенсивному росту массы корпуса.

Относительно модуля t следует отметить, что полученная зависимость справедлива при условии Т = tT0 и H = tH0. Если изменяется только высота борта при неизменной осадке (Т = T0, H = tH0), то

.

В обратном случае (Т = tT0, H = H0) получим

.

При независимом изменении осадки и высоты борта (Т = tT0, H = hH0)

.

Страницы: 1 2 3 

Кромочные напряжения в подошве рельса
Вертикальная нагрузка от колеса на рельс имеет смещение(эксцентриситет) относительно оси симметрии сечения рельса. Со стороны гребня колеса на головку рельса действует горизонтальная сила (рисунок 1.4). Вследствие этого в наружней кромке подошвы и внутренней кромке головки рельса сложное напряженно ...

Определение кпд винтовой пары передачи винт-гайка
Определение КПД винтовой пары для прямоугольной резьбы проводится по уравнению: (7) Для резьбы другого профиля вместо подставляется . Проверка винта на устойчивость Проверка сжатых винтов на устойчивость сводится к определению коэффициента запаса устойчивости (n). Гибкость винта зависит от его диам ...

Расчет интервала попутного прибытия
Интервал попутного прибытия - это минимальное время от момента прибытия поезда на раздельный пункт, до момента прибытия или проследования раздельного пункта поездом попутного направления. Рисунок 4 – Графическое изображение и схема расположения поездов Расчет: t пр = 0,06 ∙ ( l п/2 + l б/у ’ ...