Определение массы балласта
Страница 2

Инфо » Проектирование судов » Определение массы балласта

Отмеченные особенности алгебраических и дифференциальных уравнений масс могут быть записаны следующим образом.

Алгебраические уравнения:

(D, L, B, T, H, …) = f(Pг, υs, r, A, …)

Дифференциальные уравнения:

D = D0 + dD; L = L0 + dL; В = В0 + dВ; …

(dD, dL, dB, dT, dH, …) = f(dPг, d υs, dr, dA, …)

где D, L, B, T, H, … – искомые элементы проектируемого судна; D0; L0; В0; Т0; Н0; … – аналогичные величины судна-прототипа; dD, dL, dB, dT, dH, … приращения этих величин; dPг, dυs, dr, dA, … – различия между техни­ко-эксплуатационными характеристиками обоих судов.

Из сказанного следует, что уравнения масс, выраженные в алгебраи­ческой форме, более общие и универсальные по сравне­нию с дифференциальными.

Уравнения масс, выраженное в функции главных размещений

Если в общем уравнении масс выразить все переменные массы в функции главных размерений и коэффициентов теоретического чертежа, то это уравнение приводится к виду:

γδLBT = Σ fi(δ, L, B, T, H) + Σ fj(N) + P.

В отдельный член Σ fj(N) в этом уравнении выделены массы, зависящие от мощности главного двигателя N и длительности его работы в течению рейса, т. е. Рм и Рт. Поскольку мощность главного двигателя зависит от сопротивления движению судна, а оно, в свою очередь, от параметров корпуса, становится очевидной однородность всех переменных масс в последнем уравнении.

В рассматриваемом уравнении фигурирует несколько неизвестных – главные размерения и коэффициент полноты, поэтому для их однозначного определения необходимо задаться дополнительными зависимостями, чтобы выразить все неизвестные через какую-либо одну величину. В качестве таких зависимостей используют соотношения главных размерений, принимаемые на основе

статистики,

соотношения главных размерений прототипа,

ограничения главных размерений, налагаемые условиями постройки и эксплуатации судна,

,

другие уравнения теории проектирования судов,

,

Чаще всего все неизвестные величины выражают через длину проектируемого судна, руководствуясь следующими соображениями:

поскольку длина является наибольшим из всех главных размерений, остальные размерения получают делением L, что приводит к уменьшению погрешности результатов расчета. Известно, что при умножении приближенного числа х на точный сомножитель k абсолютная погрешность произведения Dх окажется в k раз больше абсолютной погрешности приближенного сомножителя Dх, т. е. при Х = kх, DХ = kDх. Переходя к главным размерениям и приняв, например, k = L/В, можем написать: L = kВ, откуда DL = kDВ и D В = DL/k. Если в первом случае абсолютная погрешность возрастает в k раз, то во втором в k раз уменьшается. Очевидно, что аналогичные соотношения применительны и к другим главным размерениям.

знание L необходимо для определения чисел Рейнольдса Re и Фруда Fr, фигурирующих в расчетах сопротивления воды движению судна, а следовательно, и мощности главного двигателя.

В этом случае уравнение масс запишется так:

f(L) = Σ fi(L) + Σ fj(N) + P.

При решении этого уравнения возможны два пути определения члена Σfj(N) – аналитически или с помощью графиков.

В первом случае используют приближенные формулы типа адмиралтейской: N = D υs3/C . Тогда уравнение приводится к виду

Σ f(L) + P = 0

не вызывающему затруднений при определении L.

Во втором случае расчет оказывается значительно более громоздким, но и более точным. Последовательность вычислений при этом обычно такова.

Задаются рядом значений длины судна L, перекрывающих область ожидаемых значений этой величины. Затем, применительно к выбранным L вычисляют Re и Fr, определяют все компоненты полного сопротивления движению судна R, используя при этом подходящие графики результатов серийных испытаний моделей судов, переходят от сопротивления к мощности главного двигателя N, определяют Σfj(N) = Рм + Рт, а также остальные компоненты нагрузки проектируемого судна fi(L). Полученные результаты наносят на график, позволяющий найти корень уравнения (рис. 5).

Страницы: 1 2 3 4

Львы моря
Арабы вышли на морскую арену как наследники многовековой легендарной славы финикиян, не сумевших пережить завоевания Александра Македонского. Их корабли, строившиеся на верфях города Фарса, наполнили новым смыслом библейские фразы о «фарсисских кораблях»,— и точно так же, как их седые тезки, они «и ...

Технологическая карта на строительство дорожной одежды
Технологическая карта составлена на устройство двухслойного щебеночного основания и двухслойного асфальтобетонного покрытия при строительстве автомобильной дороги Климовск - Воротынск км 8-24. Ширина основания 8,6 м, толщина 73 см в плотном теле, а ширина покрытия 8,0 м, толщина нижнего слоя - 6 см ...

Определение руководящих отметок
Наименьшее возвышение поверхности покрытия над уровнем поверхности земли для участков 2-го типа местности по условиям во 2-й дорожно-климатической зоне при типе грунтов в виде супеси принято равным Н (2) = 1,20 м. Наименьшее возвышение поверхности покрытия в местах устройства водопропускных труб: Н ...