Расчет на статическую прочность рабочей лопатки первой ступени турбины высокого давления
Страница 1

Инфо » Турбина турбореактивного двухконтурного двигателя на базе РД-33 » Расчет на статическую прочность рабочей лопатки первой ступени турбины высокого давления

Расчет на прочность пера лопатки будем проводить с помощью методики указанной в пособии [5].

Рабочие лопатки осевой турбины являются весьма ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом.

При работе авиационного ГТД на рабочие лопатки действуют статические, динамические и температурные нагрузки, вызывая сложную картину напряжений.

Расчет на прочность пера лопатки проводим только от действия статических нагрузок. К ним относятся:

­ центробежные силы масс лопаток, которые появляются при вращении ротора;

­ газовые силы, возникшие при обтекании газом профиля пера лопатки и в связи с наличием разности давлений газа перед и за лопаткой.

Центробежные силы вызывают деформации растяжения, изгиба и кручения, газовые – деформации изгиба и кручения.

Напряжения кручения от центробежных и газовых сил слабозакрученных рабочих лопаток малы, и ими обычно пренебрегают.

Напряжения растяжения от центробежных сил являются наиболее существенными.

При расчете лопаток на прочность принимают следующие допущения:

лопатку рассматривают как консольную балку, жестко заделанную в ободе диска;

напряжения определяют по каждому виду деформации отдельно (для сильнозакрученных лопаток это допущение несправедливо);

температуру в рассматриваемом сечении пера лопатки считают одинаковой, т.е. температурные напряжения отсутствуют;

лопатку считают жесткой, а деформации лопатки под действием силы и моментов пренебрегают;

предполагают, что деформации лопатки протекают в упругой зоне, т.е. напряжения в пере лопатки не превышают предел пропорциональности;

температура лопатки турбины изменяется только по длине пера.

Цель расчета на прочность лопатки – определение напряжений и запасов прочности в различных сечениях по длине пера лопатки.

Расчетный режим – режим максимальной частоты вращения ротора при нулевой скорости и нулевой высоте (Н=0, М=0). Этим условиям соответствует взлетный режим.

Все величины необходимые для формирования исходных данных берем из газодинамического расчета и профилирования рассматриваемой ступени турбины.

Распределение температуры и предела длительной прочности

по высоте лопатки

Знать температуру лопатки турбины в различных ее сечениях необходимо для установления предела длительной прочности.

В связи передачей тепла от лопатки в диск, теплопроводностью температура ее примерно на одной трети длины у корня существенно уменьшается. Обычно температура лопатки в корневом сечении составляет: .

Приближенно можно считать, что на двух третях длины лопатки температура постоянна, а на одной трети (у корня) изменяется по закону кубической параболы:

,

где L – длина профильной части пера лопатки;

Х – расстояние от корневого сечения лопатки до расчетного (Х<L/3).

Разбиваем перо лопатки на 11 сечений.

Температуру лопатки на среднем радиусе берем из газодинамического расчета турбины на среднем радиусе tлс=934 (⁰С).

Температура лопатки в корневом сечении составляет

tлк=tлс-100⁰С =934-100=834(⁰С).

Для каждого сечения лопатки определяем температуру, а затем предел длительной прочности в каждом сечении. Результаты заносим в таблицу 2.1.

Рисунок 2.1 –Распределение температуры по высоте лопатки

Таблица 2.1 - Параметры материала по сечениям лопатки

№ сеч.

1-1

2-2

3-3

4-4

5-5

6-6

7-7

8-8

9-9

10-10

11-11

Т, C

770

800

850

870

870

870

870

870

870

870

870

удл,МПа

870

820

780

730

730

730

730

730

730

730

730

Страницы: 1 2

Расчет интервала попутного следования с остановкой и без остановки
Интервал попутного следования – это минимальное время от момента прибытия или проследования через раздельный пункт до момента проследования или отправления поезда попутного направления через соседний раздельный пункт. Рисунок 3 – Графическое изображение и схема расположения поездов Расчет: tпр = 0, ...

Ощущение равновесия, ускорений, вибраций
Равновесие – это свойство органов человека воспринимать и реагировать на изменение положение тела в пространстве, а также действие на организм ускорений и перегрузок. В состоянии равновесия важную роль играют вестибулярный аппарат, зрение, мышечно-суставное чувство и кожная чувствительность. Сохран ...

Краткая характеристика объекта проектирования
На всех АТП имеется медницкое отделение. Оно предназначено для ремонта радиаторов, топливо- и маслопроводов, топливных баков, вкладышей подшипников и т.п. Для медницких работ основным оборудованием являются специальный верстак для ремонта радиаторов, ванны для испытания топливных баков, верстаки, п ...