Наплавка под слоем флюса

Наплавка металла — это нанесение металла на поверхность детали с помощью сварки.

По техническим признакам различают следующие виды наплавки:

- по степени механизации процесса — ручная, механизированная, автоматизированная, автоматическая;

- по способу защиты металла в зоне сварки — под слоем флюса, под расплавленной обмазкой электрода в вакууме и в защитном газе;

- по характеру протекания процесса — непрерывные и прерывные.

Сущность наплавки под слоем флюса состоит в том, что сварочная дуга, возникающая между электродом и изделием, защищается от окисления кислородом воздуха слоем расплавленного гранулированного флюса толщиной 20—40 мм. Флюс, поступающий в зону сварочной дуги, плавится под действием выделяемого ею тепла.

Принципиальная схема полуавтоматической электродуговой наплавки деталей под слоем флюса показана на рис. 15.

Сварочный ток от источника тока по проводам подводится к контактам, касающимся сварочной проволоки и медной шины, расположенной на патроне.

Для наплавки деталей под слоем флюса выпускаются наплавочные головки различных конструкций: ПШ-5, ПШ-54, ПДШ-500, ПДШМ-500, АБС, А-409, А-580, ПАУ-1, ОСК-1252М. Наплавочная головка устанавливается на суппорт токарно-винторезного станка и перемещается при наплавке деталей с помощью ходового винта токарно-винторезного станка.

Рис. 15. Схема установки для полуавтоматической электродуговой наплавки деталей под слоем флюса:

1 — патрон токарно-винторезного станка;

2 — восстанавливаемая деталь;

3 — слой шлака; 4 — наплавленный металл;

5 — флюс; 6 — электродная проволока; 7 — контакт провода от источника тока с электродной проволокой; 8 — наплавочная головка; 9 — бункер с флюсом; 10 — контакт провода от источника тока с медной шиной патрона (деталью); е — смещение электрода относительно вертикальной оси детали (эксцентриситет электрода)

Твердость наплавленного слоя порошковыми проволоками достигает HRC 52—56. Режимы наплавки цилиндрических поверхностей при постоянном токе обратной полярности представлены в табл. 10.

Таблица 10. Параметры наплавки цилиндрических поверхностей электродной проволокой диаметром 1,2—2,5 мм с вылетом 20—30 мм.

Преимущества восстановления деталей наплавкой под слоем флюса следующие: производительность автоматической наплавки под слоем флюса выше в 3—5 раз по сравнению с ручной сваркой; высокое качество наплавленного металла и высокая его износостойкость; для выполнения работ не требуется высокой квалификации наплавщика.

К недостаткам наплавки деталей под слоем флюса относятся большая зона термического влияния, значительный нагрев деталей малых размеров, снижение усталостной прочности деталей на 20—40 %.

Осталивание (железнение)

Электролитическое осаждение железа возможно вести в ваннах с горячим и холодным электролитами (горячее и холодное осталивание) при постоянном и переменном асимметричном токе. Формы постоянного и переменного асимметричного тока показаны на рис. 16.

Рис. 16. Формы тока, применяемые при осталивании (железнении) деталей: а — при постоянном токе; б — при переменном (асимметричном) токе

Рис. 17. Схема комплексного анода для осаждения электролитического железа (осталивание): 1 — штуцер подвода электролита; 2, 5 — полукольца анода; 3, 7 — электроконтакты; 4 — шейка вала; 6 — текстолитовый корпус анода; 8 — замок; 9 — прокладка; 10 — полость, заполненная электролитом

Холодное осталивание асимметричным током представляет собой процесс нанесения металлопокрытия на изношенные поверхности деталей с применением управляемого асимметричного тока. При этом виде осталивания получается наиболее прочное покрытие.

Процесс электролиза под давлением повышает твердость осажденного электролитического железа с HRC 45—48 до 60—63 при существенном улучшении качества покрытия.

Осаждение металла на круглую деталь в проточном электролите под давлением 0,15—0,20 МПа осуществляется внутри комплексного анода, показанного на рис. 17. Холодное осталивание производится в электролите следующего состава: хлористое железо — 400—500 г/л; йодистый калий — 5—10 г/л; серная кислота — 1 мл/л; содержание соляной кислоты определяется по плотности рН, которая должна быть не более 1,5.

Определение трудоемкости техобслуживания и ремонта автомобилей
Число капитальных ремонтов (Nкр.г), а также технических обслуживаний ТО-2 и ТО-1 (N2.г,N1.г) по парку автомобилей за год можно определить из выражений : Nкр.г=, (2.6) N2 r= (2.7) N1.r= (2.8) Общий годовой пробег автомобилей определяем по данным предприятия за 2000 год, которые приведены в таблице 2 ...

Основные проектные данные и технико-экономические показатели участка
Зона технического обслуживания автомобилей (ТО-1) организована в соответствии с настоящим типовым проектом, характеризуется следующими данными: Номенклатура выполняемых работ: первое техническое обслуживание автомобилей; Численность работающих всего, человек – 9,в том числе основных – 9. При планир ...

Расчет эксплуатационных расходов
Важным стоимостным показателем эффективности являются текущие (эксплуатационные) расходы. Они обычно рассчитываются на исходный или конечный расчетный год или на тот и другой, а иногда суммарные за весь расчетный срок. В данном проекте к ним относятся эксплуатационные расходы, которые зависят от да ...