Электрогидравлические системы управления
Страница 1

Инфо » Гидравлические системы АКПП » Электрогидравлические системы управления

Начиная со второй половины 80-х годов прошлого столетия, для управления автоматическими трансмиссиями стали активно использоваться специальные компьютеры (электронные блоки управления). Их появление на автомобилях позволило реализовать более гибкие системы управления, учитывающие гораздо большее, по сравнению с чисто гидравлическими системами управления, число факторов, что, в конечном счете, повысило КПД связки двигатель-трансмиссия и качество переключения передач.

Первоначально компьютеры использовались только для управления блокировочной муфтой трансформатора и в некоторых случаях для управления повышающим планетарным рядом. Последнее касается трехскоростных коробок передач, в которых для получения четвертой (повышающей передачи) использовался дополнительный планетарный ряд. Это были достаточно простые блоки управления, как правило, входящие в состав блока управления двигателем. Результаты эксплуатации автомобилей с подобной системой управления имели положительный результат, что и послужило толчком развития уже специализированных систем управления трансмиссией. В настоящее время практически все автомобили с автоматическими коробками передач выпускаются с электронными системами управления. Такие системы позволяют гораздо точнее управлять процессом переключения передач, используя для этого гораздо больше параметров состояния, как самого автомобиля, так и его отдельных систем.

В общем случае электрическую часть системы управления трансмиссией можно разделить на три части: измерительную (датчики), анализирующую (блок управления) и исполнительную (соленоиды).

В состав измерительной части системы управления, могут входить следующие элементы:

• датчик положения селектора режимов;

• датчик положения дроссельной заслонки;

• датчик частоты вращения коленчатого вала двигателя;

• датчик температуры ATF;

• датчик частоты вращения выходного вала коробки передач;

• датчик частоты вращения турбинного колеса гидротрансформатора;

• датчик скорости автомобиля;

• датчик принудительного понижения передачи;

• выключатель повышающей передачи;

• переключатель режимов работы коробки передач;

• датчик использования тормозов;

• датчики давления.

На анализирующую часть системы управления возложены следующие задачи:

• определение моментов переключения;

• управление качеством переключения передач;

• управление величиной давления в основной магистрали;

• управление блокировочной муфтой гидротрансформатора;

• контроль за работой трансмиссии;

• диагностика неисправностей.

К исполнительной части системы управления относятся различные соленоиды:

• соленоиды переключения;

• соленоид управления блокировочной муфтой гидротрансформатора;

• соленоид регулятора давления в основной магистрали;

• прочие соленоиды.

В блок управления поступают сигналы от датчиков, где они обрабатываются и анализируются, и на основании результатов их анализа блок вырабатывает соответствующие сигналы управления. Принцип работы блоков управления всех трансмиссий, независимо от марки автомобиля, примерно один и тот же.

Иногда работой трансмиссии управляет отдельный блок управления, называемый трансмиссионным. Но в настоящее время наметилась тенденция использования общего блока управления двигателем и трансмиссией, хотя, по сути, этот общий блок также состоит из двух процессоров, только расположенных в едином корпусе. В любом случае оба процессора взаимодействуют друг с другом, но при этом процессор управления двигателем всегда имеет приоритет над процессором управления трансмиссией. Кроме того, блок управления трансмиссией использует в своей работе сигналы некоторых датчиков, относящихся к системе управления двигателем, например, датчика положения дроссельной заслонки, датчика частоты вращения коленчатого вала двигателя и др. Как правило, эти сигналы поступаю сначала в блок управления двигателем и затем в блок управления трансмиссией.

Задача блока управления заключается в обработке сигналов датчиков, входящих в систему управления данной трансмиссии, анализе получаемой информации и выработке соответствующих управляющих сигналов.

Страницы: 1 2

Расчёт необходимого усилия ГНУ, величины удлинения плети, длины анкерного участка, перемещений контрольных сечений
При работе с ГНУ применяются следующие схемы растяжения плетей: 1. При L ≤650 м растягивается вся плеть; 2. При 1300 ≥ L> 650 м растягивается каждая полуплеть отдельно. Так как длина рельсовой плети равна 1100м, то примем вторую схему растяжения: Рисунок 2.2 – Схема растяжения плетей ...

Организация местной работы
Общее оперативное руководство местной работой железной дороги, ее структурных подразделений и станций осуществляется службой перевозок железной дороги, которая отвечает за выполнение показателей оперативных планов, утвержденных руководством железной дороги. Непосредственными организаторами выполнен ...

Особенности конструкции двигателя
Остов двигателя состоит из следующих основных частей: фунда­ментной рамы, станины, цилиндров и цилиндровых крышек. Все части остова образуют единую жесткую конструкцию, обеспечиваю­щую отсутствие деформаций при работе двигателя от действия сил давления газов и сил инерции движущихся частей. Для над ...